Mesh resolution effects in Large Eddy simulations of atmospheric boundary layers in various stratifications and terrains

Jacob Berg, DTU Wind Energy

Collaborators: N Troldborg, NS Sørensen (DTU), PP Sullivan EG Patton (NCAR)

Vindkraftnet, 13 November 2018, DTU Lyngby campus
High fidelity modeling...

Just another buzz word? (...and what does it mean to the turbine?)

Validation vs verification

And what about accuracy and robustness...?
WHY LES of the ABL – and what about resolution?

Resolved turbulence in time and space

time series, covariance functions and coherence

fatigue loads estimations
WHY LES of the ABL – and what about resolution?

So by definition – LES is Mesh size dependent (in contrast to RANS?)
Critical areas: surface layers, stable layers, entrainment layer and in complex terrain; in principle everywhere...

Critical scales: small scales inside the inertial range (non-Gaussian scales)
Current setup

- Pseudo spectral LES developed at NCAR
 - (Sullivan & Patton JAS 68, p.2395, 2011 and Sullivan et et. JAS 71, p.4001, 2014 etc)

- Pseudo spectral means explicit filter in horizontal directions (2. order FD in vertical)
 - in contrast to explicit filter in FV

- Deardorff SGS model with stability corrections

- Flat or curvy bottom (inhomogeneous terrain)

- Boussinesq approximation for buoyancy

- Radiation BC at top

Remember: non neutral stratified flows are non-stationary
Why LES works in shear produced boundary layers

\[C_{uu} (k) \sim k_i^{-7/3} \]

\[q^w \]

\[\Delta = \{ 128, 23, 12, 6, 3 \} \]

\[128^3 \quad A \quad (\text{coarse}) \quad B \quad C \quad D \quad (\text{fine}) \quad 1024^3 \]
Conditional neutral boundary layer

Mesh size independence not yet achieved of TKE budget at 1024^3!
Conditional neutral boundary layer

\[
\frac{d}{dt} TKE = SP + PT + TT + BP + \epsilon
\]
Conditional neutral boundary layer

\[\phi_m = \frac{dS}{dz} \frac{\kappa z}{u_*} \]
Conditional neutral boundary layer

SO, ~TI seems invariant cross resolutions – but resolved is not!
Conditional neutral boundary layer
Conditional neutral boundary layer

- Structure functions and the small scales (perhaps not turbine relevant... ???)

Fine resolution (D) in agreement with generalized log-law of order $O(8)$ (k^{-1} scaling regime)
Conditional neutral boundary layer

Spectral tensor in height, z:

$$
\Phi_{ij}(k_x, k_y, z) = \frac{1}{(2\pi)^2} \int \int R_{ij}(r_x, r_y, z)e^{-i(k_x r_x + k_y r_y)} dr_x dr_y
$$

Coarse

Fine
Conditional neutral boundary layer

\[E_h(k_h) = \frac{1}{2} \int_0^{2\pi} (\Phi_{11}(k_h, \theta) + \Phi_{22}(k_h, \theta)) k_h d\theta \]

\[E_w(k_h) = \int_0^{2\pi} (\Phi_{33}(k_h, \theta)) k_h d\theta \]
Convective and stable stratification

Convective

Stable (GABL1 @ Δ = 0.4m!)

(Sullivan & Patton JAS 68, p.2395, 2011)

(Sullivan et al. JAS 73, p.1815, 2016)
Complex terrain at Perdigao

Technique: Terrain following coordinates and pressure-velocity coupling through iteration

You have most likely all seen it plenty of times...
Complex terrain at Perdigao – strictly neutral
Complex terrain at Perdigao – strictly neutral
Complex terrain at Perdigao – strictly neutral

Seems relatively robust (model to model)
Complex terrain at Perdigao – strictly neutral

Difference in U_{norm} = impact on wind resources
Complex terrain at Perdigao – strictly neutral

Resolution in the two LES models:

\[\Delta f_{ps} = \left(\frac{3}{2} \Delta x \Delta y \Delta z \right)^{1/3} \sim 1.3(\Delta x \Delta y \Delta z)^{1/3} \]
Final remarks

• Crucial areas are the surface layer and the entrainment layer.
• Even at highest resolution statistics are not necessarily converged – questionable if it has any effect on wind turbines (Berg et al. 2016)
• Expensive to carry out mesh studies.
• Convective boundary layers are more forgiven to resolution compared to stable– but are still capped by a stable stratified layer…
• Stable is tough – in complex terrain with large flow structures = BIG COMPUTATIONS!
• Daily cycle simulations – a tradeoff between mesh size and domain size ?